Postgres@L 14
Internals

Egor Rogov

InfoGraph

(o]
=
o
[7]
(0]
el
0)
QS
(o]
o

Under the Hood: The Architecture of PostgreSQL

LOGICAL DATA ORGANIZATION

THE POSTGRESQL
INSTANCE

=

f

SCHEMAS:
HAMESPACES FOR OBJECTS

LOGICAL VS. PHYSICAL INDEPENDENCE
Physical Tablespaces

|— | pg_default

Logical Schema

DATARASE CLUSTER
(in PGDATA)

template1
(Ostaoit User

Template)

CREATE
DATABASE

TABLESPACES:
PHYSICAL DATA
PLACEMENT

PHYSICAL STORAGE MODEL

EVERYTHING IS
A "RELATION"
(Tables, indexes,

Sequences)

FROM RELATION TO FILES: FORKS

Space)

Visibility)

oue s e SmmsmanS

00103030C
00100010
00101010 | —>
00t00100
00101100

ilLeri0ie
olgicaod
oreiioio
01011083
38051080

01011€00
01011100
01011010 | —>>| 01101000 | =)~ | 00210050
oioiioll
01061£00

oril lOlOT PAGES:

61010010

01001681
01001010

pcaorasto
03001000

01091033
obd110Ld

CLIENT
CONNECTION

THE POSTMASTER:
THE EXRENT PROCESS

MAIN FORK
(Actual Data)

FREE SPACE MAP
(Tracks Available

VISIBILITY MAP
(Tracks Page

THE SMALLEST

UNIT GF VO
(typically SkB)

4

WRITE-AHEAD LOG
DURABILITY

HANDLING LARGE DATA: THE TOAST MECHANISM

ROW EXCEEDS
THRESHOLD

TOAST TABLE

(Hidden Storage)

COMPRESS
OR MOVE
OUT-OF-LINE

| TOAST STORAGE STRATEGIES

plain
(No TOAST)

(Compress then Store)

)
main]
J

extended
(Comprese: Store)

[external
 (Store without Compression)

(KEY B

PERFORMANCE
IMPLICATIONS

~ A\ SELECT * ON
4 @ LARGE COLUMNS

Forces de-TOASTing of
values, which is
resource intensive.

\ —

PROCESS AND MEMORY ARCHITECTURE
BUFFER CACHE

SHARED MEMORY
AND CACHING

(Holde Data Pages,
Minimized Disk (/0)

BACKGROUND
PROCESSES

autovacuum
r—(CIeans 0ld Data)

wal writer
(Records Changes)

checkpointer
(Syncs Data to Disk)

BACKGROUND
PROCESSES

A NotebookLl

A Visual Guide to Database Transaction Isolation

4. The PostgreSQL Way:

1. The Core Chalienge:
Consistency vs. Concurrency

%)

= TRANSACTIONS
Bundles muitiple
DATA CONSISTENCY THE CONCURRENCY
Assurance of data SpeEons ik e Lo PROBLEM

all-or-nothing unit.
aecuracy and correctness,

correctness, defined by
application ‘rules (e.g.,

Multiple transactions
running simultaneously
can interlence, siolating
total balance remains consistency rules.

constant during a transfer).

THE NEED FOR ISOLATION

To guarantee consistency, transactions
must be Isolated, ensuring concurrent
execution equals sequential execution.

3. The S: The SQL Standard: Four Levels of

Isolation
Isolation Level

Read Uncommitted

Read
lenient. i :
Jevatina et bifass Uncommitted

consistency guarantees
and performance.

. Read
Read Committed Committed
Repeatable Read Re;;::::ble
Serializable Serializable

Stricter levels often require
more looking, reducing
concurrency.

2. Concurrency Anomalies:
What Can Go Wrong?

Dirty Read
Transaction A reads uncommitted
data from Transaction B. If B rulle

back, A read Invalid data.

Lost Update
Two transactions read and update
the same value, everwriting and
“losing" the first's change.

Phantom Read

Non-Repeatable Read
A transaction reads a row twice but gets A transaction runs the same query twice
different data each time because another but gets a different set of rows because
transaction modified and committed that another transaction inserted or deleted

row in between the two reads. rows that match the query's criteria.

Lost Dirty | Non-Repeatable | Phantom Other
Update Read Read Read Anomelies

Yes
v X v v/ Yes
v X X v/ Yes

X . x X =

Note: “—" indicates the anomaly is prevented. “Yes" indicates it is allowed.

Shapshot Isolation

->

gug
I

e

— 1=

PostgreSQL Uses Snapshot Isolation
Employe Multi-Version Concurrency Control
(MVCC). Each transaction operates on a
consistent “snapshot” from its start, reducing
locking.

PostgreSQL | Lost Di Phantom| Other
Lgve| Updates | Reads Regeahbh Reads | Anomalics

Stricter Than The Standard

In PostgreSQL, Dirty Reads are never
permitted. Read Uncommitted behaves
exactly like Read Committed.

Beware of New Anomalies

Prevents standard anomalies but can suffer
from Read Shew (in Read Committed) and
Write Show (in Repeatable Read).

Serialization Failures
Instead of Anomalies

At higher levels (Repeatable Read,
Serializable), PostgreSQL proactlvely
aborts conflicting transactions.

gg::mitted v X v v Yes
Egggatable % X v X Yes
Serializable 3 = X X 4 -—

*Note: "Lost Updates" refers to application logic reading, calculating,

and writing back, not prevented by default.*

5. Practical Guidance:
Which Level Should You Use?

Read Committed
(The Default)

PROS:
Good performance, no forced
transaction retries.

CONS:
Developer is responsible for
preventing anomalles like read
skew and lost updates using explicit
locks (SELECT FOR UPDATE) or
single atomic SQL statements.

Repeatable Read

PROS:
Protects against more anomalies,
great for complex, multi-
statement read-only reports.

CONS:
Application must have logic to
retry tronsactions that fail due to
serialization errors. Still
vuinerable to write skew.

Serializable
(The Safest)
PROS:

CONS:

A NotebookLM

Inside a PostgreSQL Page: A Visual Guide to Data Storage and Transactions

Anatomy of a PostgreSQL Page (8KB Block) The Structure of a Row Version (Tuple)
Header (PageHeaderData) 23+ Byte Header (MVCC Metadata)

. Fixed 24 bytes. Metadata, checksums, pointers
Every page follows a specific five-part structure. }J T et pecitl 1 S T AR

) Item Pointers (ItemidData) Transaction D' Transaction ID that Pointer to Statusjhint bits
: [: |) Array of 4-byte pointers to tuple locations. thatinserted deleted/updated next version (e.g., committed/
£ b Enables tuple movement without breaking references (0if current) aborted)

\
—//

User Data

Data is stored in pages, which are divided into a header, pointers, | | s FreeSpace

: ; Empty contiguous block where new tuples and
the actual data (items), free space, and a special area. Bowtters Growtowards eschiother

Items (Tuples) Data Alignment Wastes Space
Actual ;ow data (r?w versions). Order affects size due to padding
Added from end of page backwards S i
: pao Inefficient (40 bytes) Efficient (34 bytes)
Special Space 3) - . :
Located at end. Used for index-specific information SRR integer
\ e.g., 8-tree), often empl s
(eg) By 6 bytes wasted Optimized storage
Theilifecycle of alilupleMVi€CinAetion .. = & 0 L 0 0 s L g
1. INSERT 2.COMMIT 3. UPDATE 4. DELETE 5. ROLLBACK (Abort)
r) Commit Log (CLOG) (g (g | Commit Log
e ——— xmax: 778 (Current) xmax (Ooleting) xmax: 778 (Aborted) (CLOG)
l] xmin: 778 (Current)
xmax: 0 e
Status recorded in external Commit Log. ctid: man: 778 (Current)
L Tuple on page is not immediately changed L
New tuple added. xmax set to 0, Hint Bits Are Set LazinN kel eloe Two-stop process: Old tuple xmax set Tuple is not physically removed. xmax ~ Transaction marked aberted in CLOG. Changes
indicating current, valid version thee):\ sgis xm(i:neg onsm Stad Hirit to current transaction ID. New tuple set to ID of dolating transaction. remain on page; xmax_aberted hint hit will be
- bit to avoid future lookups created with xmin as current ID Becomes invisible after commit set by next observer, making change invisible
Supporting Structures & Concepts
Indexes Point to All Row Versions TOAST for Large Data Virtual Transactions Optimize Reads Subtransactions for Savepoints
Indexes lack amin/weax. : TOAST Table] Large column data moved Read-On Modifyi Read-only transactions get Parent Using SAVEPRINT creates
index entries point to Bibin Wiple t0RA ™| to separate TOAST table. (Tmnsactit%] Transafglt'i‘gn] virtual IDs; permanent IDs = subtransactions with own IDs.
specific TIOs, but table Main tuple holds a pointer v v assigned only if modifying Commit status depends on parent,
page must be checked (Virtual ID @emanemm) data tracked in pg_subtrans
for visibility

A NotebookLl

What is a Snapshot?

A Consistent View of
the Database

A snapshot represents the state of committed
data at a specific moment, providing a
stable and consistent view for a transaction.

Ensuree Transaction Isolation
Each transaction uses its nem snapshot,
meaning different transactions can see
different states of the data simultaneously
without interfering with each other.

‘@)

=
Not a Physical Copy

Instead of copying data, a snapshot is a
logical construct defined by a set of
numbers that helps apply visibility rules to
existing raw versions.

A Deep Dive into PostgreSQL Snapshots:
Understanding Transaction Visibility

Snapshots and Isolation Levels The Anatomy of a Snapshot The Rules of Visibility

Read Committed: One Snapshot Per Statement Visible:

In this isolation level, a new snapshot is created at the Xmin Xmax Committed Before Snapshot
beginning of each individual SQL statement within a transaction. (Lower Bound) (Upper Bound) (xid < xmin)
The ID of the object active The first unused transaction i 1
) : transaction. All transactions ID. All transactions with an ID ! Visible
TS i@ with a lower ID em quarmiteed greater than or equal to xmax 1 Data
: .. Q to be elfier committed or started after the snapshot was] |
‘@ rolled back. taken and are invisible. : = Changes from
fnshed long befo
nis on: re
Snapshot Snapshot thi snapshg?l was
taken are always
Snapshot Range visible. |
Statement 1 Statement 2 Conditionally Visible:

Committed Within Snapshot Range
(xmin g xid « xmax)

Visible
Data

<«— Visualize the Difference —

! |

| / ‘ fle ONIY 1 the
£ xmin 1110 130 11480 Is NOT in visible ONIY if
4 @ .@ Fha transaction ID is NOT
1 sip_list? in the sip.list
Q. :.:0® (meaning it committed
Sy K before the snapshot
g ’. : © was taken).
(@
e ‘ Transaction ID (sid) Axis
Snapshot m ST
A xmin Xmax ; “ Invisible
(Lower Bound) (Upper Bound) _ Data
The ID of the aidest The first unused)
Statement 1 Statement 2 active transaction. All transaction ID. All 2 Changes from
transactions with a lower transactions with an ID Invisible: transactions that
1D ore gumomeed to be greater than or equal to Started After an affer the
either summitted or xmax started after the Snapshot snapshot was created
rolled back. snapshot was taken and (xid z xmax) are never visible.
Repeatable Read & Serializable: b asslble
One Snapshot Per Transaction xip_list Exception:
in these eitister fovele, a single snapshot is created (In-Progress List)

Your Own Changes Are
Always Visible

A transaction can always see its
own uncommitted modifications.

at the start of the first statement and is reused for
the entire duration of the transaction.

Alist of active transaction IDs that
were runaing between xmar and xmax
wknn the snapshot was arsated.
Their changes are not visible.

The Database Horizon and VACUUM

The Database Horizon

The object xmin among all currently
active snapshots in the database. It
defines the object polint lo history any
active transaction needs to see.

Outdated
Tuples
(Dead Data)

Horizon Enables Cleanup

0ld rew versions (outdated tuples) no longer
visible to any active transaction (i.e., maze
whose detotlen zid is older than the hmicon) cal
be safely removed by the VACUUM process.

xmin 300 100 900 1100 1000

Long-Running Transactions
Cause Blost

A long-running transaction with an old
snapshot holds the database betieen

back, preventing VACUUM from cleaning
up cead tuples and cawiing tables and
indexes to grow in size (clost).

Special Cases

System Catalogs Use Experting Snapshots
Up-to-Date Snapshots for Consistency
To ensore correctness, aueries The Tg.,expon.snapshot function
on system tables (e.g., checking allows multiple concurrent
construints) use the most recent transactions to onport and share
data, Ignoring the transaction's the exect seme snapshot, ensuring
primary snapshot. they all see an identical state of the
atabase (witical for tools like
pareller pg, domp).

A NotebookLl

The Problem: Standard Updates Are Expensive Anatomy of a PostgreSQL Update:
Every pPDATE creates a new tuple version, leaving the o!d one behind. H ow HOT & Page Pruning Optimize Performance

Every index accuulze pointers to “dead” bot tuples over time.

HeapPage Database Index The Ultimate Optimization: Heap-Only Tuple (HOT) Updates
[Tuple (Old) | What are HOT Updates?
L Tuple (0Id) J An optimization that avoids creating new index entries when an UPDATE does not modify any indexed columns.
[Tuple (Old) J Index Heap Page HOT Chain in Action
e
[Tuple (Old)] f Tu
J LR _ ple [JUplel=. JUpleE— Tuple
[Tuple (New)] :] (Original, Head of Chain)J {(Version 2 HOT)J {(Version 3 HOT)J (Current, HOT) J
Index Bloat Every index must be updated, even e v
s rchanges o ondrsgcoumms. (), TR 0
Indexes accumulate pointers to) ; ctid: (0,2) | hhu: t | hot: t | t_ctid: (0,3)
deecailpieioverine ctid: (0,3) | hhu: t | hot: t | t_ctid: (0,4)
< : . id: (0,4) | hot: t | t_ctid: (0,4
First Line of Defense: Page Pruning L ctid:(0,4) INGRE 1 ctid-(0.4))
What is Page Pruning? How a HOT chain works: An index scan finds the first tuple. If it's marked “Heap Hot Updated,” the scan follows the

h rent, visible version.
A fast, automatic cleanup that removes dead tuples (no longer visible IS LI A SN AU e Lt o LT

to any transaction) from a single heap page.

Bef&r%uplrgsmg After Pruning Managing HOT Chains: Pruning & Splitting Heap Page (Full) HeapPage (Hew)
: (siluplestfiere dead) Pruning a HOT Chain (()
[Tuple(0ld) | { [(0,1)|dead | age pruning is ?martefdwt;th H(? T chalﬁs Slncg Intermeld'lta}e ~H Newtuple |
2 ples are not referenced by indexes, they can be completely
L Tuple (Old)] ((0.2) | dead j removed The first tuple in the chain is kept but changed to a
[Tuple (Old)] e [(03) | dead] "redirect” state, pointing to the current head of the shortened chain.
fillfactor = 75%) L J
| Tuple(Old) | [(04)|normal | R ;
- J Splitting a HOT Chain Use fillfactor to reserve space for HOT updates.
(0,1) | normal (0,5) | normal If a page becomes full and a new tuple version cannot be stored, For tables with frequent updates to non-indexed columns, lowering
1(0,2) | normal | the chain is "split." A new tuple is created on a different pagb fillfactor (e.g., to 75%) leaves empty space on each page, allowing
(0,3) | normal and a new, second entry must be added to the index. This breaks HOT chams to grow without spliting. The trade-off is a larger
(0,4) | normal the HOT optimization for that chain. overall table size.

A NotebookLM

PostgreSQL'’s Cleanup Crew: A Guide to VACUUM & AUTOVACUUM

The Problem: “Dead Tuples” in PostgreSQL

(UPDATE and DELETE commands create b
“dead toplex”, instead of everwriting or
romoving deta, PeelgroDB), instbs old
row versions as Inactiva, leaving them on
disk to ensure transaction visibility.

Read tuples lead to “table bloat". ™
Over tano, these unuced rows
accumulate, consuming disk space
and potentially slowing down

table scans.

4
TN

User

VACUUM is the solution. It's a
cleanup process that removes
dead tuples and makes the space

they occupted available for rouse. J

|
The 4 Stages of a Manual VACUUM /éfxm)

1. Heap (Table) Scan

Scans the table to find dead tuples, using the Vixibility
Map to skip pages known to have no dead tuples. Their
IDs are collected in memory (maintenance_work_mem).

3. Table Vacuum

BERERT
OOEES

Scans all of the table's indexes to find and remove
entries that point to the collected dead tuples. This
can run in parallel for multiple indexes.

4. Table Truncation

Re-scans the table to remove the actual dead tuple
versions, now that they are no longer referenced by any
index. Updates the Free Space Map.

If enough empty pages exist at the end of the table
file, this final step may lock the table brietly to return
the empty space to the operating system.

= Autovacuum & Autoanalyze Trigger Conditions N

autovauvacuum_ autovacuum_vacuum_ autovacuum_vacuum_ dutovacuum_vacuum_ autovacuum_analyze_ 3utovacuum_analyze_
threshold scale_factor insert_threshold mseﬂfcale_factor threshold threshold
(50) 1000) (50) (50)
4= (0,)| *table_rows 4 (0,2) * table_rows + (0,1) * table_rows
S table_rows R\ table_rows) @ table_rows e
\. Default values are shown in persnioeses. These server-leval settings can be ovemitiden for individual tables to line tune behavior. Y,

\(autovacuum_!acuum_mumy).

. 1 he Automation Engine: How Autovacuum Works

Autovacuum solves the scheduling problem. Running VACUUM manually is inefficient, tuo often
- wastes resources, too rarely causes bloat. Autovacuum automates this based on actual table activity.

The Launcher and Worker Architecture
The Autovacuum Launcher process wakes up periodically
(autovacuum, na'ptime) and viscis Autovacuum Worker
processes for databases that need cleaning.

Workers bandle tables
coquentiiullc. A single worker
processes one table at a time

within a database. The total

monher of conenrroct
. workers is limited b
autovacuum_naptime autovacuum_max_workers
Autovacuum 5 (default:gj.
Launcher |
Autovacuum
Worker

Autovacuum is triggered by thresholds. Autovacuum runs on a table when
the number of modified or dead taples exceeds a calculated threshold.

AUTOVACUUM Trigger Insert-Only VACUUM Trigger AUTOANALYZE Trigger

P it if ANALYZE (which gathers statistics for the
VACUUM runs if: VACUUM runs to update the visibility map if: query planner] runs f:

B > 4 A > 46 & > 4o

Tuning and Monitoring Vacuum Operations B

Manage system lead with Default Monitor active VACUUM jobs Multiple Index scans indicate Log autovacuum activity
cost-based thruitting. autovacuum_vacuum_sost. with pg_stal_progress_vacuum. insufficient memory. for long-term analysis.
Autovacuum pauses periodically ~ _ daloy is sum. Solsis a This system view shows the If index_vacuum_count is Set log_autovacoum_wir_dorclion
to avind agcouming too many signifieant change fram obler yy;rsot ghees, pages seurmed, greater than 1, it maans 10 0 io log avery autovacuum
resourees. It does a act amountof ~ Versiom. wcn used 20ms) and number of index scans maintenscco_tack_fneor was run, helping you identify tables
“ivork” (autovacuum_vacuum_scst. and i betler veriod for (index_vacuum_count). 100 sniad to hold all dead topic that are frequently vacaumed or
.fnub), then passas for a doration modum herdwars. hle, forving multiple, expensive take a long hide to precuss.

passes over the indoxes.

A NotebookLl

Age, Not ID, Determines Order:
PostgreSQL compares “age”
(transactions occurred since) rather
than absolute ID number.

A

Standard VACUUM freezes tuples older

PostgreSQL Freezing: Preventing Transaction ID Wraparound

THE PROBLEM: TXID WRAPAROUND

32-Bit Limit Reached in Weeks:
4 billion Transaction IDs exhausted
in about 6 weeks at 1,000
transactions/second.

The Danger: “Time Travel" Data Los
New transactions incorrectly see TT
as being in the "future”, making its
changes invisible and leading to
catastrophic data inconsistency.

Step 1: Routine Freezing
‘vacuum_freeze_min_age’
(Default: 50 million transactions)

than this age on processed pages.

Step 2: Aggressive Freezing
‘vacuum_freeze_table_age’
(Default: 150 million transactions)

If table’s oldest unfrozen TXID (relfrozenxid)
exceeds this, VACUUM scans *all* pages.

“VACUUM FREEZE": This command performs an
aggressive freeze on an entire table immediately, freezing
all tuples regardless of their age.

/’I;l|l\\

o

TAKING MANUAL CONTROL OF FREEZING

“COPY ... WITH FREEZE": For bulk-loading static data, this
command freezes the rows as they are inserted, preventing
future VACUUM on them (as long as they don't change).

Step 3: Forced Autovacuum
‘autovacuum_freeze_max_age’
(Default: 200 million transactions)

A safety net. Autovacuum is forced to run
on a table if it gets too old, even if disabled.

THE SOLUTION: TUPLE FREEZING

é

 FUTURE

Ei;nmulnmmn
R Lo Tble

datfrozenxid

‘Laggard Table' determines
database's freeze age.

//I|||\\\‘v

What is Freezing?

VACUUM identifies old tuples and
marks them as "frozen", meaning
they are universally visible to all
transactions, past and future.

Modern Freezing Uses Hiot Bits:
Previously changed tuple's “xmtn®
to special value %2). Now, sets two
“hint bits" in the header, preserving
original “xmin" for debugging.

Frozen Tupies are Infinitely Old:

A frozen tuple is treated as if its
creation transaction is in the distant
past for every other transaction, safely
removing it from wraparound risk.

Step 4: Emergency Failsafe
‘vacuum_fallsafe_age’

(Default: 1.6 billion transactions)
The final defense. High-priority VACUUM

runs, skipping non-essential work to freeze
tuples as fast as possible to prevent shutdown.

Ideal for Unchanging Data: Manually freezing is most

useful for tables that are loaded once and rarely or never
updated, avoiding unnecessary vacuum overhead.

A NotebookLM

Taming the Bloat: A Guide to PostgreSQL Table Reorganization

The Problem: Why Regular VACUUM Isn't Enough

Regular VACUUM reuses
space but doesn't shrink files.
It can clear space inside data
pages but rarely reduces the
total page count to return
space to the operating system.

N

Regular
VACUUM

This leads to “bloat” —
oversized tables and indexes.
When the ratio of useful data
to file size becomes too low,

performance suffers.

The Consequences of Bloat

La B

Longer full Larger buffer cache Slower index Excessive disk

table/index requirements access as B-trees and backup

scan times. due to lower gain extra levels. space usage.
data density.

A Practical Demonstration of Bloat

Start with a Delete 90% of Run a standard
healthy table. the date. VACUUM.
500,000 rows. 450,000 rows removed.
Tall;le Si;e= 67 MB File Size Data Density
ata Density . .
(tuple_percent): 91.33%. UnChanged' Plummsts'
67 MB 9.13%
Despite measive delation, Over 90% of the file is
the table stid occupies now free space.
the same disk space.

Alternatives to VACUUM FULL
Other Rebuilding Commands

o-0 Rebuilds the table while physically
80 reordering rows based on a specified
80 inisg main table data. Quickly deletes
all rows by creating a new empty file,

CLUSTER REINDEX ~ TRUNCATE hich is much faster than DELETE.

For Minimal Downtime: Use Extensions
Tools exist to rebuild tables without a prolonged exclusive lock.

pg_repack 8- pgcompacttable

@ Creates a new table in the Gradoally moves rows to the

background, tracks changes » 1 beginning through small updates
- with triggers, and their swaps, D and vacunms. Slower but
requiring only firrel locks. ~ requires no extra disk spacs.

The Solution: Rebuilding with VACUUM FULL

VACUUM FULL rebuilds the table and indexes
from scratch. It creates new, densely packed data
files and then replaces the old, bloated ones.

After

Table Size: 67 MB | Index Size: 6.5 MB
Data Density Restored:

tuple_percent restored to 91.23%, and
index evg_leaf_density to 91.08%.

Before
Table Size: 67 MB | Index Size: 109 MB

Drastic Size Reduction:

The table size chrinks significantly, and
index size is reduced.

Major Drawbock: Exclusive Table Lock. VACUUM FULL blocks ail read and

write access while it runs, making it unsuitable for high-evailability systems.

Preventing Bloat Before It Starts

Problem: Long-Running Problem: Mass Data Updates

EyEE
EyEuE:

Mitigate by separating analytical
queries (ULAP) outo read replicas or

using timeouts like
idle_in_transaction_session_timeout,

Updating every row in a large table at
oncs can double its size.

Solution: Process in Batches. Instead of
one large UPDATE, process rows in smaller
batches. An intermediate VACUUM can then

clear old rows, allowing new rows to reuse the
freed space, keeping the table size stable.

A NotebookLl

THE PAGE REQUEST LIFECYCLE: HIT OR MISS?

POStg res Q L's B ra i n : STEP 1: THE SEARCH BEGINS STEP 2A: CACHE HIT!

= - Buffer ManaEger checks a Page found in hash table. Process
ee Ive I nto t e u e r a c e HASH TABLE for the page. usen page directly from RAM, N
avoiding slow disk I/0. [= ‘
E==) CACHED PAGE
ANATOMY OF THE BUFFER CACHE — '
AN ARRAY OF BUFFERS 5 ot HASH TABLE)
Compused of fixed-size buffers. SERAR&F;?E‘XJEST > — »
Each buffer has a data page
and a header. gx%%%%l 5 DISK(SLOW) FREE BUFFER
THE HEADER Page nutin hash table. ~ UPDATING THE CACHE
STORES METADATA System must read from After a miss, page is loaded
Each header helds diskinto a free buffer. metadata up atgd in header,
vital information reference added to hash table,
about its data page. usage count setto 1.
MAKING SPACE: THE EVICTION STRATEGY

WHAT HAPPENS WHEN
THE CACHE IS FULL? THE CLOCK SWEEP

h i d) | 'clock hand'
BUFFER CACHE ledst g 6ﬂ S et o

(SH ARED M EMORY HUB) g?&?gsg r:;est evict an a candidate for eviction.
Resides in server’s chared memory, :
accessible to all PostgreSQL processes. HANDLING
B m_ DIRTVPAGES
4 PINNED If chosen buffer is ‘di
‘ Plnning Locks the Buffer: ; !
A pinned buffer jpin count HANDL'NG BULK 0PERAT|0NS :,tfri:tg:tf:tdsi;%séfgfe
DATAPAGE > 0)isin-use and cannot reuss
be removed. THE TH#E%T '?FbC#CHE zOLLUJION ; :
L i 5 i X
arge operations can flood the buffer cache, pushing out hot pages EIINEIN GAVI c."m’ g q
and inspects each buffer.
THE BUFFER RING SOLUTION Pinned? Skioped. ﬂ —
TUNING AND ADMINISTRATION PostgroSQL uses small, dedicated 'buffer rings’ umﬁgem I[?E::e count -] —>
or bulk operations to contain exiction. decremented. First unpinned —
with usage count it is chosen. DIRTYBUFFER DISK FREE BUFFER
KEY FINDING HOW TO HOW TO \
SIZING YOUR CACHE MONITOR WITH PRE-WARM THE CACHE BULK READ VACUUM ”
(shared_buffers) pg_buffercache WITH pg_preware (256KB) (256KB) THE EXCEPTION' LOCAL CACHE FOR TEMPORARY TABLES
Default size (125MB) is Inspect cache contents to Load important tables into
too low, Start with 2%% see cached relations and cache after restart or — TEMPORARY TABLES GET THEIR OWN SIMPLER AND M.ORE EFFICIENT
pllotal LM Hot, pages gbased 4 save/(eStoreicacheislate: e '?eAn? lZEary data is session-private, uses a simpler, };:;:I?i:lgc;ag?zeed::r;?glIne%egyct(:zTnlgeguffers
iSagecount) THREE EVICTION STRATEGIES: local cache instead of the shared buffer cache. parameier (default 8MB). :

Different strategies depending on the operation type.
A NotebookLlI

A Visual Guide to PostgreSQL's Write-Ahead Log (WAL)

1. The “Why": Durability vs. Performance

The Challenge Data Files
After a crech, data in RAM is lost. v : .

Constantly writing changes to disk Direct Disk Writes Rsadomu)
(random U/0) is slow. (Slow)

PostgreBQL uses WAL to balance
performance and safety.

Performance
Cost

WAL Path
A\ (Fast & Safe)

RAM (Volatile)

The Golden Rule:
Log First, Data Later
A log record describing a

data page modification MUST
be written to disa before the

WAL Stream

' data page itself is. This is the
“Write-Ahead” guarantee. (Sequential 1/0)
What Gats Logged? What is NOT Logged?
« Page modifications in buffer cache + Operations on UNLDGGED
+ Transaction commits/rotlbacks & temporary tables

« File operations

4. Putting It All Together: Crash Recovery

€ Read pg_control
If state is "in production”,
trigger recovery.

© Find Starting Point
Begin from "REDO location" in
pg_control (last checkpoint).

No Iback Needed

Roll forward. Uncommitted
ractions are treated as aborted.

@ Recovery Complete
New checkpoint performed,
database ready.

2. The "What": Anatomy of the WAL

(=) LSN (Log Sequence Number):

“ 0/3E7EF818 I‘l The WAL's Address System
64-bit number representing its

byte offset from the beginning.

Logical Structure:

A Stream of Records
WAL is a continuous stream
of log entties with a

-

standardheader. eSS _______._______.

- — r Y
TXID TXID [Tx 10 (o |[rxi0 \
Resou: Resource Mgr Resource Mgr | | == || Resource Mgr | v
Length Length | Length == || Length]
Checksui Checksum == || Checksum /

Checksum
gk,}

Physical Structure:
Segments on Disk

Stored as a collection of
_ files, typically T6MB each.

N e e e e e e e e e
-

WAL Buffers

(Shared Memory) PGDATA/pg_wal Filename Example:
Cache for now WAL records 000000010000000000000030
before Rushing to disk. Timeline ID + Log Sequence

Number.

5. Tuning and Monitoring WAL
Balancing Checkpoint Triggers

© Replay the Log s
= Triggers: checkpoint_timeout (time
Reald Wr':‘L fomafrd, = ORgng'les_wal_siz'; (sise). fiae)
apply changes if data = Gost: Most checkpoints time-based.
page is older.
Warning Signs

If size-based checkpoints are much more frequent,

max_wal_size may be too low.

Role of Background Writer (bgwriter)

Preactively writes pages to disk, reducing checkpointer work.

Key Metric: buffers_backend (in pg_stat_bgwriter) should be LOW.

3. The "How": The Checkpoint Process

Checkpoint: Safe Starting Point
A point in the WAL sequence where all
modified data pages are flushed to disk.

Why Necessary?
Create a known eafe point for recovery,
allowing oid WAL files to be recycled.

Recovery Starting Point

Failure 1 Failure 2
| I

I l S

- —
Last Recovery replays WAL from the last

Checkpoint successful checkpoint to the failure point.

The 3 Phases of a Checkpoint (checkpointer process)

@ 2. > 3
Start Execution Completion
Identify doty pages. Write doty pages Write checkpoint record,

to dish over time. update pg_control.

Points to REDO location
(start of recovery).

pg_control

Key Configuration Parameters

Pt oo oo

aesponsmmot smo WD
max_wal_size 1GB g":‘éf&ein‘t’iggﬂing a
checkpoint_completion_target 0.9 ge:ztnidl: echeckpoint 1/0
min_wal_size 80 MB mir“r:‘g:: size to keep

A NotebookLl

The Performance vs. Durability Trade-off: Inside PostgreSQL's WAL Mode

Synchronous Commit: The Safety-First Approach

Transaction only ‘committed’ after WAL
records physically written to disk.
(Default: synchronous_commit = on)

PHYSICAL
DISK WRITE

Asynchronous Commit: The Speed-Focused Alternative

Transaction confirmed immediately; WAL
records written to disk in background.
(synchronous_commit = off)

BACKGROUND
WALWRITER

Pro: Higher Throughput
& Lower Latency

Pro: Maximum Reliability
Ensures ACID durability requirements are
met. Once a commit is acknowledged,

the data is safe from crashes.

Benchmark Data

(/ Con: Slower Performance Dol _
ﬁ Waiting for disk 1/0 increases Transactions (30s): 20,123

latency and reduces throughput. Avg Latency: 1.491 ms
TPS: 670.8

Ensuring Fault Tolerance

Solution: Full Page Writes (FPI)
PostgreSQL writes a full copy (FPI)
to WAL on first modification after
checkpoint for recovery.

J FPIs increase WAL size (e.g., 71.5% of
f data). Enable ‘'wal_compression = on’ to

reduce size (e.g., 29 MB to 10 MB).

Challenge 1: Non-Atomic Writes
Database page (8KB) written in
smaller blocks (4KB). Crash can
leave corrupted, partial page.

) Solution: Checksums

Enable ‘data_checksums' to verify
page checksum on read. WAL records
always protected by checksums.

) Challenge 2: Data Corruption

J Hardware failures can silently -
corrupt data in memory, transfer,

or on disk, spreading to backups.

Eliminates disk I/0 wait, making
commite significantly faster.

Benchmark Data

Mode F {7 Con: Risk of Data Loss

Transactions (30s): 61,809 ...recently committed transactions
Avg Latency: 0.485 ms can be lost (a window of up to 0.6
TPS: 2066.4 seconds by default).

Understanding WAL Levels

Level 3: Logical
(wal_level = logical)

Includes Replica info plus
data for Logical Decoding.
Required for Logical

Replication to other s¥\lstems.
A NotebookLlI

Level 2: Replica
This is the default level.
Logs enough for Point-in-Time

Level 1: Minimal
(wal_level = minimal)
Logs essential crash recovery

info. Skips bulk operations to Recovery and Physical
save space. No backups/ Streaming Replication. All
replication. data changes logged.

Understanding Database Locking in PostgreSQL

Database locking is a fundamental mechanism for managing concurrency, preventing data corruption by controlling simultaneous
access to shared resources. PostgreSQL employs a sophisticated system to balance performance and data integrity.

The Fundamentals of Locking

What is a Lock?

A lock is a mechanism that controls
concurrent access to a shared resource,
ensoring that multiple processes don't
interfere with each other.

The Lock Lifecycle

2 O

Ofa)
?

Acquire a lock Perform its Release the lock so
on a resource operation other processes can
use the resource.

.+, The Trade-off: Finer-grained locks

-()- increase concurrey but also increase the

MY~ number of locks to manage. Coarse-grained
locks are simpler but limit concurrency.

Common Heaverlyweight Lock Types

@ relation: Table-level locks
EER tuple: Row-level locks

transactionid: Locks on a transaction itself
B page: Locks on data pages (used by some
indexes)
advisory: User-managed locks

object: Locks on non table database objects

~~Y_ No Concurrency = No Locks
@ If a resource is not accessed simultaneously
by rrocesse it doesn't require a lock.

Key Characteristics of Locks
Granularity: The Scope of the Lock

Fine-grained

Coarse-grained

A table-level lock is coarse,
preventing all concurrent
access to that table.

A row-level lock is fine,
allowing processes to work on
different rows of the same
table simultaneously.

Lock Modes: The Type of Access
A
\

Exclusive Mode

¢
Shared Mode

098

®

Allows multiple
processes toreed a
resource simultaneously.

Prevents any other process
from accessing the
resource; used for writing.

Basic Compatibility (Shared vs. Exclusive)

Shared Exclusive
Shared v X
Exclusive v X
Exclusive X X

Classifying Locks by Duration

Short-term Locks

Acquired for very brief
periods (microseconds) to
protect data structures in

Long-term Locks

Held for a potentially long
time, often until a
transaction ends. Protects

resources like tables shared memory.
and rows. Includes Managed automatically
advanced features like with simple
wait queues and deadlock infrastructure.
detection.

A Closer Look at PostgreSQL's
Heavyweight Locks

.+, What are Heavyweight Locks?

-()- These are the Ion?~term, object-level locks in

W PostgreSQL, visible in ‘pg_locks' view, managed
in a shared memory pool.

Common Heavyweight Lock Types (‘locktype™)

relation:
Table-level locks

&
S
% tuple: Row-level locks &;§ *"%35; 3‘9* &
& é\«i} & &
tranksactionid: -
ocksona) w
2 {ransactor itself < & 3 ¥ <
page: Lockson ' § v X o X
data pages
2 SRE / X v X
advisory: User-
managedlocks § X v X
o object:Locks E X ¥V X
on non-table AEy X X X X

objects

Table-Level Lock Modes & Compatibility

8 Modes for Maximum Concurrency

PostgraSQL provides eight table level lock modes to allow
the maximum number of oper?ltions to run in parallel without
conflict.

Most Restrictive:
Accease Exclusive
Used by crrommonds like 'DROP
TABLE'®' or 'VACUUM FULL'.
incompipatible with all other
lock meiodes, ensuring no other

priocess can access the table.

Most Permissive:
Access Share
Used by ‘'SELECT" queries.
Compatible with all modes
except the most restrictive,
allowing reads alonggside
ahnot:t any other operation.

The Wait Queue in Action

— What is a Wait Queue?
-—pn_ When a process tries to acquire a lock that conflicts
ﬁ with an existing lock, it enters a “firet-in, first-out"
wait queue until the resource is freed.

Table-Level Lock Compatibility Matrix

AS RS [RE SRE S X HBAE
AS e e X X B X
RS v VvV X X e X
RE X v Vv v X
SRE X v it g X
S X v VvV v X
i X X v X v Vv
aa X X v X X v

Deadlock Detection

If two or more transactions waiting for each other in a
circular chain, PostgreSQL automatically detects this
“deadlock” and terminates one of the transactions.

A NotebookLM

A Deep Dive into PostgreSQL Row-Level Locking

1. The PostgreSQL Approach: “Virtual” Locks in the Row Header 3. Handling Shared Locks with Multixactions

No Heavyweight Locks in Memory

How can multiple f PGBATA/ .
2 pg_multixact
transactions lock one row? Directory on Disk

The “xmax” Field is the Lock Holder

[’ Transaction ID (XID))]

.......................

o (B2l e
== | Cam-

Heavyweight lock Transaction ID (XID) written here :
structures avoided marks row as locked. :
The Trade-Off: Efficiency vs. Complexity R T J JJ
\

Q Efficiency: Lock countless
rowx with no extra RAM cost.

2. The Four Modes of Row-Level Locks

& Complexity: Waiting transactions use heavyweight

The “xmax_is_multi* Hint Bit: . : sale
= locks on XIDs to form a queue (lock info not centralized). Milfiel | Detilisie s torcT an DI

Special flag in row header indicates : .
*xmax” hoids a Multixact ID. Inlomai;':g:ﬂ %{':ur%gii%;ael}ioctlons

EXCLUSIVE MODES SHARED MODES LOCK CONFLICT MATRIK (= =Conflict) 4, The Lock Queue and Its Pitfalls
| X Kay No Koy 1. Acquire Exclusive 3. Wait for ‘xmax’ 4. Release Heavyweight
Share Share ypdate Update Heavyweight Tuple Lock Transaction to Complete Tuple Lot:lw O\ o

Key Share X X X @ b
Smartact, wockect Share . X X — : — ——
possibhe loclk] R v
automatically selecte NoKey A
(e.%., NO KEY UPDATE Update X - TUPLELOCK f;,'ﬁ,’;",’o'ﬁflsﬁ‘,:},'f The Waiting Queue Can Collapse QUOTES ON HOTSPOTS
if FX untouched). Waiting transactions in READ “Updating the same table rows from
Update X X X X | Preventing Resource Storvation: COMMITTEJJ may abandon olrdirly sevc}e{ral r::nocesses at onti‘e is abad idea.”
. i $ Heavyweight tuple lock creates orderls queue, queue and race to acquire loc - High contention on “hotspot” rowa
QST eIy, Simple SELECT Queries Never Lock Rows: prevzwnts Indeﬁgitely waiting race condi?ions. after primary release. becomes severe performance bottleneck.
To acquire a row-level lock during a read,
o o o _you must explicitly use a SELECT ... FOR o o
5. Strategies for Managing Lock Waits' (MODE| command. 6. Deadlocks: The Vicious Cycle
Process A Process B
(Order1,2) (Order 2, 1) UPDATE UPDATE
Sequential Sequential
Process Scan ' Scan
A > >
UPDATE UPDATE
Index Scan Index Scan
*NONAZT"; “SKTP LOCKED':; “lock_tinaout’; What is a Deadlock? Automatic Deadlock Dataction & Common Cause: Inconsistent Lock Order. The Hidden Deadlock Trap:
Don't Wait, Fail Fast. Process What's Available. Set a Time Limit on Waiting. Two or more transactions in a Resolution: Proactively checks for Different application processes locking Even two "WPRATE" statements can
Error out immediately if locked; Ignore locked rows, proceed to Abort stetement after specified circular dependency, each waiting for circular wait-for graph if wait exceeds same resources in different orders. deadlock if query plans cause
handle programmatically. next available (ideal for parallel duration, prevents indefmite aresource held by another. “deadLock_Vimaout” (default 13). Solution: Always lock resources in a opposite locking orders.

job queues). stack operetions. Terminates one transaction to release locks. consistent, predetermined order. A NotebookL!

A Guide to Specialized
Locking in PostgreSQL

NON-OBJECT LOCKS

Locks resources that are not standard tables or

rowx. Used to protect system catalog objects like
tablespaces, schemas, roles, and data types
during transactions.

AccessShareLock
on public schema,
prevents heing dropped

© Identified by a trio of values:

database (database OID) (system catalog OID),
and objid (object OID within the catalog).

RELATION EXTENSION LOCKS

Protects a table or index when it needs to grow.

|

Unlike most locks, released right
after the page is added, not at the
end of the transaction.

@ Released immediately after use.

Unlike most locks, released right
after the page is added, not at

the end of the transaction.
HEAP FILES B-TREE INDEXES

(Up to $12 pages) (One page)
@ Does not cause deadlocks. -

Not included in the deadlock
detection graph.

] — =

Heap files extend faster
than B-tree indexes.

“fast update” indexing. to manage application-level logic.
UNSORTED METAPAGE LOCK MAIN GIN APPLICATION CUSTOM LOCK ID EXTERNAL
(temporary) STRUCTURE PROCESS (e.g. viahashtext) - peCOURCE / API
) ~/ Like extension locks, they @ Can persist across transactions €) Managed with a dedicated
The exclusive lock on the metapage during ~ are released immediatel By default, advisery locks are set of functions:
the batch move does not interfere with and don't cause deadlocks. session-level. remaining held dvi lock
ing the index for searching. il exolicitly B A
processes using the g until explicitly released or the
session ends. unlock, try, share, zact.

PENDING LIST

v Does not block normal index reads

& Released immediately after use.

PAGE LOCKS
A specialized lock used exclusively for GIN indexes.
Manages concurrent insertions of composite values.

1 Enables thh-performance
at

ADVISORY LOCKS

A copperative, application-defined locking
mechanism.

Explicitly acquired and released by developers

PREDICATE LOCKS

A “lock” that doesn't actually lock anything.
Used by the SERIALIZABLE isolation level
to track data dependencies between

transactions.

this dependency.
SEQUENTIAL SCAN

PostgreSQL ==

Index Scans are more granular

© The core of Serializable
Snapshot Isolation (SSI). It tracks
“read-write dependencies.” If a
transaction reads a row that
another concurrent transaction then
modifies, a predicate lock records

© Prevents “phantom reads” and
“write skew” anomalies.

When a transaction commits,
PostgreSQL checks the dependency
raph. If a dangerous pattern
?potential anomaly) is found, the
transaction is aborted to preserve

INDEX SCAN true serializability.
== BAE
— - 886 ,| A || e

&) (&) &) ARG S

than Sequential Scans.

Features automatic lock escalation
to conserve memory.

A NotebookLM

A Deep Dive into PostgreSQL's Memory Locks

Spinlock: The Sprinter

The Locking Toolkit: Spinlock vs. LWLock

Understanding the Core Mechanisms

LWLock (Lightweight Lock): The Marathoner

M\ Type: Exclusive lock using atomic CPU commands for extremely short Type: Acquired for longer periods to manage data structures, sometimes
spanning |/O operations.

durations (a few CPU cycles).

X How It Handles Contention: “Busy-Waiting". Processes repeatedly check in
R/ atight loop (“spin”) until free. Efficient only for rare, brief contention.

@ Limitations: Exclusive mode only. No built-in deadlock detection or
\

monitoring instrumentation.

@ s a4 Buffer Cache
BufferMappin Hash Table
LWLock (x128

To find a buffer, a process must acquire one
of 128 LWLocks protecting the bufter hash
table, preventing bottlenecks.

Why Monitor Waits?

Locks can cause waits,
creating performance
bottlenecks.

Tracking "wait events” is
crucial.

How It Handles Contention: Shared & Exclusive Access. Supports multiple
simultaneous readers and single wiiter, offering flexibility.

) Limitations: LWLocks lack deadlock detection but include instrumentation
y for observability. No queue; access is relatively random.

Locks in Action: Critical Shared Memory Structures -
The Buffer Cache

F buffer header Spinlock: Fast,
L =) exclusive access to buffer metadata.

=
(1]
[+
Q.
o
=i
B>
Tl

The WAL Buffer

A WALWT rite LWLock: Guarantees

N
: BufferContent Lock: Acquired on buffer
C A\ (3

header to read/write a page inside.

only one process writes WAL
records to disk at a time.

R insert position Spinlock:

Buffer Pool LR) WAL Pages

Monitoring Lock Waits & Performance

Turning Abstract Concepts into Actionable Insights

Step 1: Real-Time Check with Step 2: Historical Analysis
= -—| Pg-stat_activity'. N Since “pg_stat_activity " is not
a “—o| Live snapshot of current l I cumulative, an extension like
olll “wait_event_type" and 8] ‘pg_wait_sampling" is needed

“wait_event" for active processes. to collect wait statistics over
time for a complete picture.

= i S Acquired to reserve space
? BufferlO Wait Signal: Flag set during @ WALBufMapping LWLock . sequentially in a WAL page.
© diskl/O, telling others to wait. A s;ngLe L\{)VILock protects the erllltire Wé\L cache _ WALInsert LWLock (x8): After
buffer strategy Spinlock: Protects ash table, as access Is smaller and more 7o Teserving space, multiple
L) free buffer mg,‘{ag';mem and eviction sequential than the main buffer cache. / rocesses write data concurrently

y acquiring one of eight LWLocks.

Common Wait Event Categories & Analysis

® LWLock Sample Analysis:

@& Lock (heavy) “pg_wait_sampling_profile”
& BufferPin might reveal frequent "10°

1D (disk) pgbench events like "WALTyoc" and
%4 Client (network) WALWrite®, indicating a disk
38 IPC (jnter-process) 1/O bottleneck.

A NotebookLl

The Life of a PostgreSQL Query: From Text to Result

Demo Database Overview
A Russian Air Traffic Database Model

Step 1: Parsing Step 2: Transformation (Rewrite)
The server reads the raw SQL text to understand its structure. The initial parse tree is modified and expanded.
Raw SQL Lexer & Parser

A “Lexer" splits the text into
tokeos (seowards, identifiers). A
“Parser” checks if these tokens
follow SQL grammar rules and
builds the AST.

QUERY Sub-tre

Views are Replaced with Subqueries: The primary use is
to replace any reference to a view (flse pg_tables) with the

e [m,osrﬂmw] [FROMESPR] underlying SELECT query, and oorers are expandies.
againgt the database catalog. /\ / Row-Level Security policies: Security rules are injected
The system checks the AST Columnetry Table Table into the query tree. and conno-pnan tmat are imjected into
against the database data. name name the outonle query tree.

Simple vs. Extended Query Protocols

Simple Protocol Extended Protocol
One Request, One Response A More Oranular Approach
e 1. Prepare: B8 2. Bind & Execute:) (3. Batched Fetching\
m Transform) Plan)JExecute \ B) Parse Onee Secure & Smart
/ =2 - Client sends
Client Skt ‘Parameters’)
. Bi 3
Full Result Set 2 :}2‘;:,‘&, i
Disadvantages: Client |° ,';:Liﬁimsf’ve’ statement Server Periog Server
Inefficient for Repetitive Queries: The same query sent multiple eaches result - Server plans with Result Set
times must be parsed, transformed, and planned every single time. ‘Prepared custom parameters,
All-or-Nothing Results: The client must wait for the full result set, Statement' returns Results’
which cav fie slow for Bage queries. S JAA\ / \ J

Step 3: Planning (Optimization) Step 4: Execution

The Planner finds the most efficient execution path. The Executor runs the chosen plan.

SQL is declarative... The planner, a cost-based The evecutor works its way through the plan tree,
optimizer, evaluates many potential plans to find the with each parent node “puiling" rows from its
“cheapeat” one. child nodes.

E Data Flows Up

the Tree: Leaf

NESTLOOP nodes (like
SEQSCAN)
read from
tables. The
Tows are
5 passedup...
" = tothecllent.
Whatis a "Plan"?
Aplan is a tree of physical operations (e.g., table scan,
ndex scan, index scan, nested loop join) that will
retnove the data.
Sample Plan Tree
2.00 Costis based on
NESTLOOP Statistics: To
Join estimate costs, the E E
planner relles on
Cost st statistics about the
400 $.00 data (table size, data Memory Usage: Operations that need to accumulate
' SEQSCAN , (INDEXSCAN l distribution). data (llke SORT) use memory allocated from work_mem.
Table Scan Index Scan If exceeded, data is spilled to temporary disk files.

Advantages:

1. Prepare: Parse Onee: The query is
puised and transformed once, and the
result is eached. Transmion, the
prepared statement.... asolds
redondant parsing.

2. Bind & Execute: Secure & Smart:
Parameter values are sont separately...
presents SQL injection and allows the
glanner to create a custom plan

ased on the specific values.

3. Batched Fetchinq: The client can
fetch results in smaller batches,
instead of prepanus results... instead
of waifing for the entire set...

Custom vs. Generic Plans in the Extended Protocol
The Planner's Dilemma: Re-plan or Reuse?

The first 5 executions always
Ggs;;g:";,}:? generate custom plans. The planner
calsulates fhoi overage cost.

Prepared

Is Execution

Statement Count <>S?

Execution

Is Generic Plan
‘Average Eest <> Custom Use GENERIC
Plans Average Cost? Plan

Why it Matters: A generic plan might be faster on average but can be very inefficient for specific
parameter values, and roues... controlled with the plan_eachs_moda setting.
A NotebookLlI

The PostgreSQL Planner's Secret Weapon: A Guide to Query Statistics

From basic table counts to advanced multivariate analysis, here's how PostgreSQL estimates costs and chooses efficient execution plans.

THE FOUNDATION: RELATION (TABLE) LEVEL STATISTICS

(N Basic counts for KEY METRICS: reltuples & relpages
every table. -
PostgreSQL stores high-level %

DEEPER DIVE: COLUMN-LEVEL STATISTICS

Understanding the data inside each column.

Stored in pg_statistic, these stats describe data distribution, crucial
for estimating WHERE clause selectivity.

statistics for each table in the reltuples (Row Count) relpages (Table Size in 8KB Pages) n_distinct: The number of unique values

pg_class sKstem catalog,
providing the planner with a
starting point.

How are they collected?

Statistics are gathered during manual or
automatic ANALYZE operations, as well as
other maintenance tasks like VACUUM,
CLUSTER, and CREATE INDEX.

KEY FINDING EXAMPLE
The planner is smarter
than its data.

If actual file size is larger than
relpages suggests, the planner
adjusts its row estimate upwards.

Number of rows; default estimate
for queries without filters.

\ default (e.g., 410 rows,
/ reltuples = -1).

Total table size in pages.

-

STATISTICS
COLLECTION

Before After
ANALYZE ANALYZE
Planner assumes Estimate becomes

accurate based on
gathered data.

ADVANCED TOOLS: EXPRESSION & MULTIVARIATE STATISTICS

PROBLEM
UHERE extrect(mouth FROM date_col) = 2

Planner can't guess function results, uses
inaccurate fixed guess (e.g., 0.5%).

PROBLEM

g
@ \ \ J

SOLUTION

Planner can't guess function resuilts.
Planner can't guess function results, uses
inaccurate fixed: (e.g., 0.5%).

SOLUTION

Columns are not always independent.

Planner assumes independence, leading to
severe underestimates for correlated columns.

null_frac: The frequency of NULLs

-\ Fraction of NULL entries, used
) to estimate IS NULL and IB
NOT NULL conditions.

VISUAL CONCEPT
For non-uniform data: Most Common Values (MCV)

VALUE A
[VALUEB
& VALUEE
[VALUEE
[0 VALUEE

For uniform data, planner divides
total rows by n_distinct for
equality checks.

VISUAL CONCEPT
For many unique values: Histograms

Stores exact frequencies of popular values for highly
accurate estimates on specific value filters.

200 Solution 1: Extended Statistics on Expressions
</> | Use CREATE STATISTICS to collect detailed stats
(n_distinct, MCV) on expression results.

) Solution 2: Indexing an Expression
-:.: Creating an index on an expression automatically

&= generates and stores statistics.
SOLUTION

Solution: Multivariate Statistics

Use CREATE STATISTICS to analyze relationships,
including Functional Dependencies, #-Distinct
Combinations, and Multivariate MCV Lists.

Groups remaining data into buckets with roughly equal
items, storing only boundaries for range queries (<, #).

OTHER KEY STATISTICS FOR FINE-TUNING

avg_width: Average value size

(bre)

Average size of data in a column, critical for
memory estimates for sorting/hashing.

correlation: Physical vs. Logical Order
+0.9

Highly Sorted +1

Measures correlation between diss storage
and logical value order. High correlation (+1
or -1) significantly speeds up index scans.

A NotebookLM

Anatomy of a PostgreSQL Table Scan:

From Sequential to Parallel

PostgreSQL's Pluggable

Storage Engine Architecture

© © PLUGGABLE STORAGE ENGINES

(High-Update CLIT S G
Implace updates) N\ . ’

HEAP

ZEBSTORE

(Culum-ettented,
Efficient OLAP)

The Sequential Scan
(Seq Scan)

The Foundational Access Method.

Reads the entire table file, pa?e by pa'%e,
checking each tuple for visibility and filtering
out these that don't match the query.

—

VISIBLE?

TUPLES '0

(Default Engins)

Defined by the Storage Engine:

Tuple Format & Data Structure, CORE STORAGE

INSERT DELERE UDATE Logi 2L
ogic, :

Visibility Rules, Backup/Analyze gf;%‘t';;drggg{ gteglrggg Eﬁ;?:e

Procedures. Core

Transection
Manager (ACID)

PAGE 1

PAGE 2 0 PAGEN
—

NOT MATCHING
FILTER -~

5 The Parallel Sequential Scan

LEADER

Workers: execute PROCESS

parallel part on
subset of data.

WORKER PROCESSES

© O

Worker 2 Worker 3

©

Worker 1

Gather: collects Leader: executes

C

COST ESTIMATION FORMULA:
Total Cost = 1/0 Cost + CPU Cost

1/0 System

POSTGRESQL CORE Index

(UNIVERSAL COMPONENTS) Support

1/0 COST; CPU COST;
(Table Pages x (Number of Tuples x
seq_page_cost, cpu_tuple_cost,

efault 1). default 0.01).

Sequential reads are faster.

Work to process each row.

resullts fromall seguentiall pag :
workers. GATHER NODE 'S gathered data.
Cost of Parallelism
Setup Cost: Transfer Cost:
parallel_setup_cost + J)aralleLtuple_cost
(default 1000) for (default 0,1) per tuple
starting workers transferred.
7. Cost of parent nodes depends 6
=6 on total cost of child nodes.
[--]
£5 5
i
25
=
= 1
0

8MB 24MB 72MB 216 MB 648 MB 1944 MB
Table Size (MB) | Recommended Parallel Workers

Rules and Limits
of Parallelism

Parallelism is Not Automatic
Conditions and parameters must be met.

When Parallel Plans are NOT Used

Q Data Modification
(UPDATE, DELETE, SELECT FOR UPDATE)

e Pausable Queries
(Carsors, PL/pgSQL FOR loops)

Q Unsafe Functions
(marked as PARALLEL UNSAFE)

g Restricted Plan Nodes
(CTE Scan, SubPlan, InitPlan run sequentially)

Minimum Table Size

min_parallel_table_scan_size
Parallel scan only considered if table size
exceeds min, parallel. table.scan.size.

Worker Process Limits

System Max:
max_worker_processes
(default 8, absolute limit)

Parallel Max:
max_parallel_workers
(dofault 6, for oil
parallel queries)

" Per-Query Max:

max_parallel ,
worker1_per_gather
(default 2. for

single query)

A NotebookLl

ANATOMY OF A POSTGRESQL INDEX: THE EXTENSIBLE ENGINE

SECTION 1: THE CORE ARCHITECTURE
OF POSTGRESQL INDEXING

WHAT IS A POSTGRESQL INDEX?

SECTION 2: CUSTOMIZING INDEXES
WITH OPERATOR CLASSES

WHAT IS AN OPERATOR CLASS?

SECTION 3. INDEX CAPABILITIES:
THE 3 LEVELS OF PROPERTIES

1. ACCESS METHOD PROPERTIES

Define core capabilities of the entire index type

A database object used to speed up data

retrieval. It links indexed values (heys) to

data rows (toplee) using a Tuple ID (TIB),
avoiding full table scans.

B-TREE
} Suited for range queries,
equality. Default. A set of operators s’ .g.,°<', <,">) and functions that teaches
an access method how to handle a specific data type.

,,,,,, A single data type can have multiple operator classes. A
HASH alnl S DBD
@%]

Efficient for simple can_order: Can can_unique: Can can_multi_col: Can
equality lookaps. WHAT IS AN OPERATOR FAMILY? return date in onlerso DIGQCE & be nulit on more
A collection of related operator classes that handle similar data

sorted order. PRIMARY KEY constraints. than one column.
types (e.g., integer, aps family for aaaliint, integer, Digint).

can_exclude: Can support can_include: Can store

(e.g., all B-tree indexes).

SRR ' GiST :
. 3 ‘ Generalized Search Trse.
< Extensible for complex types

(geometry, text search).

— CASE STUDY: SEARCHING TEXT WITH "LIKE® EXELUDE constiaous extra raevkey columns
= e for advanced checks. (envering massee).
INDEXING F g!,':fa“zed a ind; PROBLEM: SOLUTION: \
ENGINE Lgf&, ideal for fub tsat search, | Standard "text_ops’ “text_pattern_ops’ /
MaySSONE 2. INDEX-LEVEL PROPERTIES

The common engine that

cacrdimales all indes table name table name : ieting ¢
operations: fellleving TIDS, SP-GIST o — Apply to a specific, existing indes on a table.
checking data visibility, and Space Partitioned GiST. *Elena’ Elena’ ‘
\, rechecking conditions. Good for non-balanced el e ‘ S
A datasets. ‘Elena’ 'Elena’ (s]a]]
‘Elena’ | 'Elena’ WD . o S
, ' | . clusterable: index_scan: ap_scan; ard_scan:
BRIN ‘: S e | Tablerowscan Canretom Can rgtum a Canscanthe
Block Range Index | bereorderedto rowiDsone brtmap of all Index in
Very compact for large, .. .NHERE name LIKE ‘ELENA%’ . .WHERE name LIKE 'ELENAR' | match index byone. matchingrow reverse order.
; sequential datasets.) using text_pattern_ops | (CLUSTER). 1Us at once.

OPERATOR CLASSES

(e.g., int4_ops, text_ops,
gist.int4_ops)

DATA TYPES

.g., int L imt
{0 frcges e o) 3. COLUMN-LEVEL PROPERTIES

v

7 i on l (int ge] Define behaviors for a specific column within an Index.
ni4_ops eger
A\ J - aTSEa .
\ ﬁ
e ™ (2\ / l n
AC text_ops | | text X BEEE® @ @ @ @
METHODS b - 4 — —t asc//desc orderable retuTn/abIe search/array search_nulls
(e.g., btree, gist) t;t;dlean) SEQUENTIAL SCAN BITMAP INDEX SCAN Spelcn'ies Can ua[::élchy Valléedcan l:e Efﬁclf\nftly Efﬁm?‘n:ly
; e ; coleom an R readdirectly searchfor search for
@ et inthlope , Falls for LZKE queries with Explicitly use text_pattern_aps storage BV clause. fromtheindex multiple IS NULL or
g _Op! . g nowlC oullollows, Ifadlng to for LZKE queries, onabling a druch order. (index-only values (M). I5 NOT NULL.
— b°°| _ops) slow Sequential Scan. faxter Bitmap Index Scan. scan).

A NotebookLl

A Visual Guide to PostgreSQL Index Scans

~—— HOW A STANDARD INDEX SCAN WORKS —— o THE DECISIVE FACTOR: DATA CORRELATION B
INDEX HEAP What is Correlation? Relationship between physical row order and logical index order. CACHING AS A PERFORMANCE
(Table Storage) HIGH CORRELATION: THE BEST CASE LOW CORRELATION: THE WORST CASE BUFFER
(Efficient Sequential Reads) (Inefficient Random Reads) A i
Rows physically next to each other; Rows scattered randomly; many effective_cache_size
TIDs efficient, sequential reads. slow, random I/0 operations. =
3
Heap — i _h] D ol _Zg
Pages j § \
TIDs Index Heap |)7 == Heap 8 '
Pages Pages 8§ j Pages - Elstlmdatgs pages
e =] already in memory,
1. Find matching Tuple IDs (TIDs) in index. —|._ 7 3 i a reducing predicted
2. Fetch corresponding data row (tuple) from heap. random read cost
‘ High Correlation Low Correlation : =
ANATOMY OF AN EXPLAIN PLAN THE COST OF AN INDEXSCAN | ¢ Near 1 or -1 Near 0 Table Size J
Index Scan using bookings_pkey on bookings Total cost = Index page access + I
Index Cond: (book_ref = '9AEBC6'::bpcher) Heap page access & tuple *:
Fllter: (total_amount = 46500.60) processing |
v N ; 4 INDEX-ONLY SCANS: SKIPPING THE HEAP —— A COMPARATIVE SUMMARY =)
Checked using Re-checked after
index fetching data 1 Covering Index: CHOOSING THE RIGHT SCAN FOR THE JOB
- / Al requirfed ata in index — A SEQ SCAN
Skip Heap Access — INDEX SCAN
~— BITMAP SCANS: THE BEST OF BOTH WORLDS N
THE IMPORTANCE = D'&:“df';ﬁ o
COMBINING MULTIPLE INDEXES OF VACUUM 2)7
INDEX If all required columns are in the index, Before VACUUM: ©
heap access is avoided for significant eap Fetches 132,189
E \ performance boost. (p|aqn¢_,t, thind‘?d |),eap BITMAP INDEX SCAN
\ VISt nee
—_—. THE VISIBILITY 2
1.BITMAP INDEXSCAN _In-memory Bitmap 2. BITMAP HEAP SCAN BitmapAnd || MAP CHECK ' L S|
(Gethers TIDs) (Sorted by page location) (Fetches pages efficiently) INDEX | © PostgreSDL checks After VACUUM: >
Bitmap Visibility Map to Heib Fitches 0 SELECTIVITY (% of rows)
A Smarter Two-Phase Approach: Collects all TIDs, sorts them by £l STSUIS IS are (Vsibity Map update, WHEN TO EXPECT EACH SCAN TYPE
location, then fetches pages in physical order (each page read once). THE e urTentittaeacton. fower heap visits) T [Py
THE SOLUTION FOR LOW CORRELATION Bitmap built in memory (limited Index Scan Fetching very few ro'ws (high ?elef:tivity); degrades w'nh‘kfw. f:orrelalion.
; ; by worE, mem): If space rons out, CREATING COVERING INDEXES WITH INCLUDE Index-Only Scan Extremely fast, requires covering indes and up to-date visibility map.
Tums slow, randorn /0 into predictable, ordered I/0. becomes ‘lcesy', requiring Use INCLUDE clause to add extra columns to index BimapScan Strong in low correlation: for queries too selective for seq scan but not
L re checks. /) § without being part of the key. - selective enough for index scan.

" A NotebookLM

A Visual Guide to PostgreSQL's
Nested Loop Join

—\ OUTER LOOP: ITERATE
) THROUGH THE FIRST TABLE

Iterate through each row of the “outer set”. The number
of rows here is a critical factor in the join's total cost.

INNER LOOP: FIND MATCHES
IN THE SECOND TABLE

For every single row from the outer set, sean the “inner
set” to find all rows that satisfy the join condition.

THE CORE

ALGORITHM = =R e =S
G RETURN MATCHED PAIRS

As soon as a matching pair of rows
is found, it is immedietely returned
as part of the result set.

EFFICIENCY DEPENDS ON ACCESS METHOD

The join is most efficient when the outer set is small and there
is an efficient way (like an index sean) to find matching rows
in the inner set without scanning the entire table each time.

ANTI-JOIN (FOR “NOT EXISTS")

S S

MATCHING PAIRS RIGHT & FULL JOINS ARE NOT SUPPORTED ANTI-JOIN (FOR “NOT EXISTS") SEMI-JOIN (FOR “EXISTS")
Returns only pairs of rows that satisfy The Nested Loop algorithm cannot be used Returns rows from the outer set that Returns rows from the outer set that
the join condition. for Right or Full Outer Joins because it treats have NO matches in the inner set. have at least ONE match in the inner set.

Query plan node: "Nested Loop". Inner loop stope on first match.

the outer and inner tables asymmetrically. Query plan node: “Nested Loop Anil Join".

Inner loop stops on first match.
The outer set must always be fully scanned.

Query plan node: "Nested Loop Semi Join".

UNDERSTANDING COST ESTIMATION

WHAT IS “COST"?

An arbitrary unit representing the
planner's extimate of work. It has two
parts: startup cost (before the first row)
and total cost (to get all rows).

BASIC COST CALCULATION

Total Cost = (Outer Set Scan Cost)
+ (Ngyer * Inner Set Scan Cost)
+ (Nyg1at X CPU Cost per Row)

EXAMPLE 1: SIMPLE PARAMETERIZED JOIN

EXAMPLE 2: COST WITH MATERIALIZE
The cost formula changes to include a cheaper

“rescan” cost for the materialized inner set.
Total Cost = (Outer Cost) + (First Inner Scan Cost)

OPTIMIZATION:
THE “MATERIALIZE" NODE

To avoid re-scanning the inner table
repeatedly, PostgreSQL can use a
“Materialize’ node. It scans the inner
set ence, otores the result in
memory. and subsequent loops
read from this faster cache.

+ ((Ngueer - 1) x Rescan Cost) + CPU cost

ADVANCED OPTIMIZATIONS

MEMOIZE: CACHING FOR
PARAMETERIZED JOINS

N

A sophisticated cache that stores results
for specific parameter values from the
outer set in memory (work_mem).

TRACKING CACHE PERFORMANCE

Hits (found in cache), Misses (not in
cache), Evictions (removed to make
space), and memory usage.
High hits indicate effective caching.

PARALLEL EXECUTION

Nested Loop joins can participate in parallel
plans. However, only the scan on the outer
set can be parallelized. Each worker process
then sequentially performs the inner loop
lookup for its portion of the outer rowe.

A NotebookLl

How Database Hash Joins Work: From Single Pass to Parallel Processing

The Anatomy of a Hash Join

A hash join uses an in-memory hash table for fast lookups.

N Inner Set

The Smaller Table (Build Table)
Becomes the “innar Set".
The query planner
intelligently chooses the
smaller of the two tables
to build the hash table,
rolnimizing memory

| consumption.

Memory is Governed by “vark_nam’",
The maximum RAM allocated for the

Outer Set
(Probe Table)

in-Memory
Hash Table

% Build Phase: Create the Hash Table

[\ash table is determined by the e I v 4
\c;:%l;inr:'t‘io; :aarsa':ﬁg::r's? il) J L L Q Probejhase: Find Matches —— g:isn:ﬁg
i) i e i b
& ; N 3 N Parallel Hash Joins: Scaling with CPU Cores
1-Pass Hash Join: 2-Pass Hash Join:

Standard Paralle! Join: Each worker builds its own

Shared Parallel Join: Workers collaborate on a single,
hash table.

The Ideal Scenario When Data Overflows Memory shared hash table.

lem: i | 5
0 Biiild Phasc Creste the Hash Table n Problem: The hash table is too large for RAM

e Memory If the inner set is lerger than the available ‘work_nen",

The database seans the entire inner set, the database must spill data to disk.

celculates a hash value from the join key w

for each row, and stores the rows in the 1: Partition h

in-memory hash table. 0 :::'s)fromat:t::::m: :: d geit Ritsh1
outer sets are divided into |11 set 5 Outer Set Inner Inner Private Outer Set Outer Set Shared Outer Set

b4 multiple smaker "batches” g \ “ Set Set Hash Table Portion Portion Hash Table Portion
e Probe Phase: Find Matches e using a hash fonction. The —

foot batch of the inner set > T : " & .
is loaded into a hash table (==] All parallel workers read the entire' inner set to build All workers build one large hash table in shared memory. This

in RAM, while all other identical, private hash tables. They then each process a pools their work, mem, increasing the likelihood of a 1-pass

The database scans the outer set row-by- N
row. For eash row, it calculates the hash l\l;@
value of its join key and checks the hash

==L

. : batches (hom hash tables) different portion of the outer set. Total memory usage is join for very large inner sets.
table for matching entries. are written to temporary s ' s Parallel 3-Pass Jolus Handle Itassive (Jats. If even the combined memory i
- ryis
|, files on disk. multiplied by the number of workers, insefficient, 2 complex y pass parallel algorithm partitions data ia disk, and workers
\ —— v p hatch pendently using smoller hash tables in chared memory.
& getum Pha:g:fOut:t:; Resutl:sed S () step 2: Process Batches Sequentially fA! "%"z R :
nce a match is found, the combin: After the first batch is processed, the memory is ”m*—
rowis retum_ed. This process continues éD clasred. Then, for each subseque'm pair of batch optlmlzatlon and BeSt PraCtlces
until the entire outer set has been =5 files, the inner batch is leaded into the hash table, k %) (AR
seanned. e and the outer batch is probed against it. —1vs] - /JI]
O - [] AlUs 6 o THELLIN o [lu

The Planner is Smart About Join

The join is fastest when it completes in a Direction. Even if you write a

= 2-pass joins are less efficient due to heavy disk

single pass [‘Betches: 1'J. This indicates the f% (\ BO. The "EAPLAIN ANALYZE BUFFERS' output will
entire hash tabie/it whhin the aliocated ./ show significant “temp read” and “temp written”
‘work_mem), avoiding any slow disk UG. FAST Z values, indicating performance overhead.

N\ N i

Avoid "SELECT * to reduce hash
table size. Only select the columns
you onsel. Foicor columos io the hash
table mesns less memory usage,
making a 1-pass join more llkely.

Example: Memory Savings
A query using "SELECT * might
require 14SMB for its hash table, while
the same Join selecting only one col
might require fust N3MB.

Keep Table Statistics Up-to-Date
Oubtared statistics can cause the planner to “LEFT 20DL, the planner may expente it
d imate data size, Inaeing to an initial as a "UsLI17 2001 YIL orsese the

that's sea small and fersing a - smaller table can be used to bulld the hash
lc resize of batches during table, ensuril imal perf

memory aff
costly dy

9 OP

i Y
A NotebookL!

Inside the Database Engine: A Guide to Sorting & Merging

(B
i i How It Works: The Two-Pointer Scan
The Merge Join Explained Works N [kt Eouilitinn:
Merge Joins process two pre-sorted datasets. Match & Only supports equality (=)
2> operators.
& 6::-3- " né&n- . na&&
Sortedinpute £ ' Usable in Parallel Queries:
—-f)- Outer dataset can be scanned
Sorted Inout B [V Sorted Result 30 parallel; inner scanned
orted InputB | entirely by each worker.
\ .
L
. ° - \
The Sorter's Toolkit: Database Sorting Algorithms External Merge Sort (For Large Data)
A diverse set of methods for different data sizes and query needs. ‘ Phase 1: Sort & Witte Phase 2: Merge
Quicksort (In-Memory) Top-N Heapsort Incremental Sort i 2!,‘:’,’;':,%::;‘,2'&',},‘;’}:&2' = . . i e el
B) . .
= EEE : ~
Runs on Disk
Entire datsest fite in memory (work_mem Efficiently finds top 'k’ items. Optimizes partially sorted data (e.g., 1. 2. .GED 4. : 5. =28
\k Complex:ty o(n Iygf n). § J @ Complzxity: O(r? log, k). 7 Lﬁo«gt index sgan) re{iucmg memory gse ¥ L SRR T :))
7 5
1 i i : s &
The Join Showdown: A 3-Way Comparison : Join Cost vs. Data Selectivity
g : : A i Nested L
S Nested Loop Join lé Hash Join :X: Merge Join Memory g“?ﬂ“i//
Best for: Small datasets, OLTP, Best for: Large datasets, analytical Best for: Versatile for OLTP & b —— -
critical first-row latency. OLAP queries. OLAP if data is pre-sorted. 3
No startup cost Linear complesity (O(N+M)) Low memory usage © Memory Exhausted, "Merge Join
Early exit with index Very efficient if hash table fite No startup delay Dick Spill + Sort
Supports ALL join conditions in memory @ Linear complexity //
X Very slow with large datasets X High startup cost (builds entire X Requires sorted data. Explicit
(O(N*M) complexity). hash table) sort (O(n log, n)) often makes == — >
£ X Only works for equi-joins. Hash Join better. Selectivity (More Rows involved -) 4

A NotebookLl

A Deep Dive into PostgreSQL Hash Indexes

1. Insertion: Storing a New Entry TargetBucket
Index Key (Lowest bits) Code & TID
(e.g., user@email.com) Hash Code]]

' y (22-bit/64-bit)
S

Hash Function
Original Key NOT Stored in Index

Lo

QE=

Re-Check is Required

Collisions possible,
Database MUST to-check

" v

ST Bucket Page Ttk il {
2. Search: Finding a Record ac "a“ngexeémssggga c
Bucket Page Not Supported)
Hash Code 7 \
Search Term 2 TID :
/ l\
(1) (1]] —> Associated
Hash Function & i TIDs Returned

Dynamic Growth & Performance Pitfalls

Bucket

........... ffactor
Threshold
Exceeded

Bucket Splitting

Loglcal vs. Phy5|ca| Growth:
Logical buckets increase by one;
Physical file size may DOUBLE
(sudden disk usage spikes).

The Overflow Problem

Index starts with min
2 buckets. Splits to
accommodate more data.

Worst-case: Highly skewed data.
Long chain of overflow pages
requires slow, sequential scan.
Degrading performance.

On-Disk Anatomy: The Four Page Types

Metapage (Page 0)
Index's "table of contents."
Stores control data (e.g.,
maxbucket, page pointers).

| |

=

Bucket Page 0 Overflow Page Bitmap Page
Primary data pages. Additional page Bit array tracks
Store hash codes and linked to bucket cleared/reusable
corresponding TIDs. when full common overflow pages for

with skewed data). space efficiency.

Properties & Limitations

) Supported Operations

v Equality Search ('=")
(Primary Use Case)

v/ Exclusion Constraints
(Unique-like constraints)

v Bitmap & Index Scans

® Unsupported Operations
¢ Ordering ('<’,">’)
(No order preservation)

Unique Constraints
(Use exclusion instead)
> Multi-Column Indexes
(Single-column only)
> Index-Only Scans
(Heap fetch always required)

> NULLs
(Equality undefined)

A NotebookLl

A Visual Guide to B-Trees in PostgreSQL

ANATOMY OF A B-TREE ADVANCED FEATURES

A Self-Balancing Tree for Sorted Data: IN POSTGRESQL
ROOT NODE [RLUUSMBALEN ————— Maintains sorted data, enabling efficient
searches, insertions, and deletions.

Short and "Bushy":

Each node has many children
— (hundreds), resulting in a shallow
tree, minimizing disk reads.

INTERNAL NODES [RUASN

Always Sorted:
Data is sorted within each node

AER QvB TIM KJA | AER § AVB § TUM §§ KJA AER ovB

LEAF NODES | PRl PR [USST]— and across levels. Leaf nodes
, are a doubly-linked list for
: : T ; fast ordered scans.
Perfectly Balanced: All leaf nodes at same depth for consistent search time.
HOW B-TREES HANDLE DATA

1. Searching: Start at the Root 2. Searching: Descend the Tree 3. Insertion: Find the Spot 4. Insertion: Split if Full

Compare search value to keye to Repeatedly narrow search path until Traverse tree to find correct leaf If target leaf is full, split it and add a

decide child branch (AER < KJA < OVB). a leaf node is reached, fast due to node to maintain sorted order. reference to the parent. Split can

shallow depth. propagate to the root, growing the tree.
AER OVB 1A[YEEd AER OVB Custom Sorting with
Operator Classes

R

Geometric Operator
Point Class

[0

g
g

— B-TREE PROPERTIES
a Supports Ordering & Uniqueness Full Scan Capabilities Search Flexibility
Only access method in PostgreSQL Supports index Scans, Bitmap Scans, Supports searching for NULL
n to enforce data aniqueness and and Backward Scans (for DESC A Values and retrieval directly from
retum sorted data. queries) via leal node linked list. D index (index-only scans).

A NotebookLM

A Visual Guide to PostgreSQL's GiST Indexes

What is a GiST Index? How GiST Works: The Core Mechanics

: GiST (Generalized Search Tree) ; : i
GiST Index Framework: Flexible & Extensible 1. Hierarchical Structure 2. Searching the Tree

Predicate
(- N Balanced, Tree-Structured < Query
Standard B-Tree E<E Access Method for Complex Data. g%ﬁg%'ta'g; CNeE Bonsictenc
) Adaptable via Operator Classes. V) ¥
- J ~ Check
: ; Indexed]
7 - Data item Traverses all consistent branches;
B\ i multiple paths possible.
\ 3. Inserting a New Value 4. Splitting a Full Page
Operator Class Penalty fonction
Defines Core Indexing Logic @ C) .g. ?alculating
for Specific Data Types. bo;)nding b0))< :
— / enlargement i
Optimized for Handles Page Layout, ¢ [_] i L_]
?ﬁﬂﬂfﬁg rga'tl'?a 5 /L\%(t:mgii‘évaqb Pickeplit fuaction divides items to

Selects single path based on penalty function. minimize overlap, keeps tree balanced.

N\

\

Use Case 1: R-Tree for Spatial Data (e.g., Airport Coordinates) Use Case 2: RD-Tree for Full-Text Search

4 [[° ; 01001101
e e f
O - \
0% * o2 Minimum Bounding \ 01001101
= Rectangles (MBRs). \
o |
K /_,J 01681101
A ||

GiST Properties & Other Use Cases

Supports Multi-column Does NOT su
; pport :
@ 'é' extesi F:[Xd.“s'f”é d Unique Constraints ‘ EINEIR0
SRSITAITS, HIUGE or Native Ordering.

Query: "Contained Within" Search Query: "k-Nearest Neighbor" (k-NN) Search

Matches query
I \ signature against
, \ = t
f - =\ Columns. (e1ee11101) (e1@011101) 010110 sirge:a?l?rees‘
, ’i‘j Other Supported Data Types: 77 e 7 ST
e 7 —m = % (eze1101) (e1e1101) (e101101) (0202201) (... | [...] [...
P - @ E'E' % 6‘%&' Accuracy vs. Size Trade-off: False positives possible; requires
Prunes irrelevant branches based on Explores branches in order of distance Range Network Intoger Key-Value Treo-like btree gist | re-check against actual table data. Larger signature reduces
overlapping boxes. from target, efficient for k-NN. Types Addresses Armays Stores Data (Comtmies |

false positives, increases index size.

(inet) (intarray) (hstore) (bree) B-Tree data) : /
A NotebookLl

SP-GiST Explained: A Visual Guide to Space-Partitioned Indexing

A framework for creating unbalanced, space-partitioned trees optimized for specialized data types like spatial points and text strings.

What is an SP-GiST Index? g

=

Use Case 3:
Radix Tree for Strings

Internal nodes contain a
shared condition (prefix);
Leaf nodesets & TIDs.

/7 Use Case 2:
k-D Tree for Points

B-tree/GiST Nodes: One «/ SP-GiST: Packed, Small Nodes
Node per Page, Balanced on Single Page, Unbalanced
Structure (Branch depths vary)

Efficient Prefix Searches:
Internal nodes store common
prefixes. ideal for LIKE 'prefix%'

Use Case 1: Quad-tree for 2D Points

Binary Tree Structure:
Alternates splitting axis

1 = 5 2. 3 = 3 (horizontal, then vertical, or starts, with(). More compact
o < . . etc.) at each level. than B-frees, only stores
| s I 5 Generalized for necessary parts of strings.
& ol * oK k-Dimensions.
. III.' .IV. o III.Jr .IV.
o a1 i l . Key SP-GiST Properties: Supported vs. Not Supported
{ = = Feature Supported by SP-GiST Description
Searching: Prunes irrelevant quadrants Exclus?mn Constraints Yes () Can .enforce constraints like "no oyerlapplng ranges"”.
using a “consistency function” to find Covering Indexes (INCLUDE) Yes () Can include non-key columns for index-only scans.
points above (3,7). New points added to Bitmap Scans Yes (%) Efficiently combines results of multiple conditions.
corresponding quadrants, triggering : = :
"picksplit” when full. NULL Value Indexing Yes (4) NULLs are supported in a separate tree structure.
Ordering Results No (X) Cannot return results in sorted order directly from index.
Unique Constraints No (X) Cannot be used to enforce uniqueness.
Multi-Column Indexes No (X) An SP-GiST index can only be created on a single column.
Clustering No (X) Cannot be used for the CLUSTER command.

A NotebookLM

Unlocking PostgreSQL: A Deep Dive into GIN Indexes

What is a GIN Index?

GIN stands for Generalized

Inverted Index.

It's designed for composite data types

The Core Structure is a B-Tree of Elements.

metspage

everywher

mposed of separate elements, like
wor s in a document or items in an array.

It indexes the elements, not the whole value. =\ (=] (v==) ([e==| (S| (o=
GIN maps each individual element to all the table rows (TIDs) that

contain it, similar to a book's index.

farm

oink

© == = — ©
© s » w— © wm—
© cEm © omm— © ==

The main data structure is a B-tree where keys are the indexed elements (e.g., words).

Each leaf entry in this tree points to a list of TIDs where that element appears.

GIN in Action: A Full-Text Search Example
© Find TIDs for Each Key.

@ Extract Keys from the Query.

Search Query:

erywh
["everywhere | oink" {
[oink)

Performance & Trade-offs
Search is optimized by prioritizing rare terms.

M ot
chick
“form & cluck”

For a query like 'farm & cluck’, GIN fxet finds the few documents with
the rare word (‘eluck’) and only then checks if those specific documents
also contain the common word (‘farm’), saving significant work.

Querying for a rare term is drastically faster.

Searching for ‘wrote' (231,173 does) took 243ms, while
searching for 'wrote & tattoe’ (1 doc) took only 8 ims, almost as
fast as searching for 'tattoo' alone (2 2me).

writes by delaying them.

© Merge and Check Results.

GIN updates can be slow.

Indexing a single document can require many
changes across the index tree, as each word
in the document is a separate entry.

bﬂ
EEEEE
SECEE

“Fast Update” speeds up

During a search, PostgreSQL must scan
both the main index tree and the separate,

unsorted pending list, potentially reducing
read performance until the list is merged. Lasaich)
&) &

The pending list makes writes
faster but can slow down reads.

(0.4)
(1.4)
24)

e g
gf‘g Consistency
g Functi
2.4) unction

Key Use Cases

A v\
([2[3]4T)

Teppuiane (legpenuces T yesl

§.~

@‘m

Indexing Arrays

Speeds up queries that check for element
containment, overlap, or if an array is
contained by another.

Fuzzy String Search with

Trigrams

The pg, figm extension allows GIN to index
three character segments of test, enabling
very test similarity searches and pattern
matching.

Indexing JSONB Documents
GIN offers two operator classes for JSONB:
jaoah, aps (detaalt) indexes every key and
value, while jsook, path, ape indexes the full path
to each value, which is often more efficient.

Lists of row IDs are called "Posting Lists”.

If a posting list for an element becomes too long (i.e., the element is
very common), it's stored in a separate B-tree called a "posting

tree" for efficiency.

Consistency Check Process for Query: “everywhere | oink”

Contains (ENN

Consistency
"everywher" "atolt"

TID Function (ftesult)

GIN Index Properties & Limitations

Strengths Weaknesses

© Supports multi-column @ Cannot enforce UNIQUE
indexes. constraints.

@ Returns results via @ Does not support ordering,
BITMAP SCAN. so it can't be nsed to avoid

© Perfect for checking the N
esistance of elements @) Index only scans are not
within composite types. possible.

Inefficient with LIMIT clauses.

GIN always buiids a full bitmap of all matching rows before fetching
any, making it inefficient to tolok just foe ‘bral W results.

Alternative: RUM Index. The RUM extension is based on GIN but adds
features GIN lacks, like storing positional information (for phrase searchmg)
and supporting ordering, at the cost of larger index size an A NotebookLM

PostgreSQL BRIN Indexes: Small Footprint, Big Performance for Massive Tables

What is a BRIN Index? The Anatomy of a BRIN Index When BRIN Shines: The Power of Correlation Flavors of BRIN: Operator Classes for Every Need

Summarizing Data in Ranges High Correlation is the Key to Success Ideal for Append-Only Data Min Mas 10
The index stores a aummary for each BRIN is most effective when the physical Perfect for tables like event iags or ,Em 'm_:' g 09
range, not pointers to individual rows. order of rows on filas closely matelies the financial transactions where new ’ =
logical order of the indexed values. data is inserted chronologically I/ The Standard for Ordered Data o=
Block Ranges: 120 pages =y and old data is rarely updated. [Stores the minimum and maximum value 2 o7
< 966 | 993 It for each range. Best for highly correlated =
I data like timestamps or acrial numbers. T 2
B = Tea I Range size pagesirange
!
523 | 499 . . . @ " i
— — ‘ = N 5 minmas-multi Er— ‘z‘g oy
5"‘—» Data Correlation Example (flights_bi) Y the Solution for U pdated Data e
=) _Er‘l' Correlation Factor Distinct Values Visual ' Solve,s the %roblem of upgalles brleaking 8os é
= 1 [0 T R g > o 2 correlation by storing multiple value &
[l l l l l] ‘;:: o ~ scheduled_time 0.9399949 25526 T ——— ! subiranges ger sumrtroiy, laolating 02
- actual time 0.9999948 34 469 1 ootlfers. Restores efficiency at the cost s Daaa i
= 4 1 of a larger index.
A. "CO.arse" |nd?x f.or sctual_time 0.9999948 34,469 I‘ .
Filtering, Not Finding fare_conditions 0.7976897 3 NAANNAD ‘ll e m Y 5
Instekald olf Iocatinglspeciﬁ':: r(:(ws.fBRINhl flight_no 0.0020146 710 SRQL 7 2 5 E
uickly eliminates large chunks of a table . < % . . :
;) N -0. o APNATASY / For Uncerrelated Dats with Localized
(sl et maich & query's criteris. / passenger_id 0.0004612 2.6 million 7 Vit Usgfas : pri },he' & checl; dforlme 204
A —— < presence of values within a range. ideal * o2
&> o ‘A auervinteracts with = g o - for columns ilse product endes that lack -
‘\‘ Optlmlzed for thgee Zain components: - 4‘/ SSUN 3°?lml -y Ml'appos’ I‘:lml’(lemd'
S Q‘\ /‘ Massive Tables Metapage, Revmap, and 3 i e Y SEPSESSey Jithects.
NN Designed for multi-terabyte Summary Data. / BRIN vs. B-Tree: Size vs. Precision
N t \\‘ : tables where indes size is a i
S primary concemn, H =
NSNN prioritizing a small footprint . AMassive O For Geometric and Range Types
NN over propoint accuracy. Difference in Size 3‘?'95 a b°““d'“90b°’f(:i;al W“‘?‘:‘: 3t“
SR | values in a range. Useful for sperial data
N S| A F %’ a AGBI:abIe, a BglN The Trade-Off (0olme, baves] but may require planner fants as
N (=8 index can be over 1,600 B-Tree offers higher comelation statistics are offen unavailable. -
XU times smaller than a : o
' comparable in Tree index precision for finding
g individual rows, but its alse

can be a prfiibitive cost (O = W

on very large tables.

™ saanannnng

BRIN Index Size:

184 kB Summary of BRIN Properties
(Rights_ta)

What BRIN CAN Do What BRIN CANNOT Do

B-Tree Indes Size:

218 MB A" |3 +/ Multi-column indexes % Guarantee Uniquenees
It can be thought of as a smart way to speed {Kighte.J9) +/ Bitmap Scans % Provide Ordered Results (URGER BT)
up full table scans or as an alternative to Metapage Revmap Summary Data +/ NULL value searches X Be ueed for Index-Only Scans
Sue purtitionses: Pages 3¢ Support Exclusion Constraints

A NotebookLl

1. WAL | T &Y 2. COMMIT
Write-Ahead Log g8 | == Guaranteed Durabiity

Durable & Fast [‘, : '\ No Data Loss

3. CHECKPOINT [174> .58 4. BGWRITER &
Smooth /0. Rab I) @B CHECKPOINTER

Stable Performance EEESESEEE S | Efficient Writes

Simpl & Robust e Simple & Robust.

